Компьютерные подсказки для начинающих

Нужен ли многоядерный процессор. Чем двухъядерный процессор отличается от одноядерного

Статья постоянно обновляется. Последнее обновление 10.10.2013 р.

На данный момент рынок процессоров развивается настолько динамично, что уследить за всеми новинками и угнаться за прогрессом просто невозможно.
Но нам особо это и не нужно.
Нам, для того, чтобы купить процессор, достаточно знать для чего нужен будет компьютер, какие задачи он будет выполнять, и какую сумму денег мы готовы потратить.

На сегодняшний день заслуженными лидерами рынка процессоров являются две крупнейшие компании Intel и AMD .
Они предлагают широчайший выбор моделей любой ценовой категории. И от такого выбора процессоров разбегаются глаза.
А мы попробуем помочь Вам в этом разобраться, чтоб Вы смогли выбрать и купить производительный процессор и за нормальные деньги.

Начнём с того, что основными показателями производительности у процессора являются:

1) Архитектура процессора. Ведь новая архитектура будет всегда производительней чем предыдущая (несмотря на одинаковую частоту) .
2) Рабочая частота. Чем выше частота процессора тем он производительнее.
3) размер кэш-памяти второго и третьего уровней (L2 и L3);

Ну, а второстепенными показателями:
4) ;
5) технологический процесс;
6) набор инструкций;
и др.

Хотя сейчас находчивые консультанты в магазинах стараются больше акцентировать внимание на количестве ядер, напрямую связывая количество ядер со скоростью обработки данных и производительностью самого компьютера.

Количество ядер?

На сегодняшний день в продаже уже имеются восьми-, шести-, четырёх-, двух- и одноядерные процессоры от AMD , а также шести-, четырёх-, двух-, одноядерные от INTEL .
Но для сегодняшних программ и нужд домашнего геймера вполне достаточно двух- или четырёхъядерного процессора, работающего на высокой частоте.
Процессор с большим количеством ядер (6-8), понадобится лишь для программ кодирования видео и аудио контента, рендеринга изображений и архиваторов.

На данный момент оптимизация в игровой индустрии идет, в основном, на двухъядерные процессоры, только самое новое ПО и игры будут разрабатываться под многопоточные вычисления. Так что если Вы покупаете процессор для игр, то высокочастотный двухъядерный процессор окажется быстрее, чем низкочастотный, но трех- или четырехядерный процессор.

Внимание! У Вас нет прав для просмотра скрытого текста.


И выяснилось, что пока игрокам можно остановиться на современном двухъядерном процессоре, выбрав для себя решение с подходящим соотношением производительности и цены.
При этом стоит учитывать, что чипы Intel к тому же обладают технологией HyperThreading, позволяющей исполнять на каждом ядре две параллельные задачи. Операционная система видит 2х ядерные процессоры как четырёхядерные, а 4-х ядерные как восьмиядерные.
Процессоры с большим количеством ядер могут быть востребованы, в основном, в профессиональных приложениях и кодировании видео.
Восемь/шесть ядер пока не способна полностью загрузить ни одна игра.

Немного подытожим по ядрам.

Для офисного компьютера с головой хватит двухъядерного процессора нижнего ценового диапазона.
Типа Pentium, Celeron от Intel или A4, AthlonII X2 от AMD.

Для домашнего геймерского компьютера можно купить двухъядерный процессор Intel повышенной частоты или четырёхъядерный процессор от AMD.
Типа Core i3, Core i5 частотой от 3 ГГц Intel или A8, A10, Phenom™ II X4 с частотой от 3 ГГц AMD.

Ну, и для "заряженной" рабочей станции или геймерской системы hi-end понадобится хороший четырёхъядерный процессор нового поколения.
Типа Core i5, Core i7 от Intel, так как процессоры AMD очень редко используются в высокопроизводительных машинах.

О процессорах Core i3, Core i5 и Core i7 читаем в статьe:

Производительность процессора?

Как было указано выше, важным параметром является архитектура , на которой основан/выполнен процессор. Чем новее архитектура, тем "шустрее" показывает себя процессор в приложениях и играх. Так как любая последующая архитектура, что Intel, что AMD, будет всегда производительнее предыдущей.
На данный момент актуальны процессоры семейства Haswell (4-ое поколение) и Ivy Bridge (3-е поколение), а также процессоры архитектуры Piledriver семейства Richland, Trinity от AMD .

Также производительность процессора зависит от его рабочей частоты . Чем выше рабочая частота, тем производительней процессор. Актуальная рабочая частота ядер, на данный момент, от 3ГГц и выше.
Но при сравнении между собой процессоров AMD и INTEL при одинаковой тактовой частоте, не означает что они равны по производительности.
Особенности архитектуры позволяют процессорам INTEL показывать более высокую продуктивность даже с меньшей частотой, чем у конкурента.

Примечание: нельзя просто приплюсовать частоту двух ядер. Определяется, как два ядра по XX ГГц.

Ещё одним параметром производительности является размер, объём, сверхбыстрой кэш-памяти второго и третьего уровней L2 и L3 .
Это память с большой скоростью доступа, предназначенная для ускорения обращения к данным, которые обрабатывает процессор.
Чем больше объём кэш памяти, тем выше производительность.

Примечание: Core 2 Duo, Core 2 Quad имеют только L2, Core i5, Core i7 имеют L2+L3, процессоры AMD Athlon™ II X2 имеют только L2, Phenom™ II X4 имеют L2+L3.

У более ранних Core 2 показателем была частота шины FSB процессора. Частота шины, через которую процессор обменивается данными с оперативной памятью.
Чем выше частота FSB шины, тем выше производительность процессора.

Примечание: процессоры Core i3, Core i5 и Core i7 от компании Intel не имеют системной шины FSB, также как и в последних процессорах AMD, передача данных между памятью и процессором происходит напрямую.
Такой метод передачи данных значительно увеличил производительность.
У процессоров семейства Core i7 LGA1366 тоже нет шины FSB, а есть высокоскоростная шина QPI.

Технологический процесс (проектная норма процессора) определяет в первую очередь структурный размер тех элементов, из которых состоит процессор.
В частности, от технологического процесса производства зависит тепловыделение и энергопотребление современных процессоров.
Чем меньше эта величина (технологический процесс), тем меньше тепла выделяет процессор и меньше потребляет энергии.
Более ранние процессоры Core 2 были выполнены по 45- 65-нанометровой технологиям. Более новые Haswell и Ivy Bridge Corei3, Corei5, Core i7 четвёртого и третьего поколения по 22-нм, Sandy Bridge® Corei3, Corei5, Core i7 второго поколения от Intel и Bulldozer от AMD выполнены по технологии 32 нм.

Набор инструкций - это набор допустимых для процессора управляющих кодов и способов адресации данных. Система таких команд жестко связана с конкретным типом процессора.
Чем шире набор инструкций у процессора, тем лучше и быстрее обрабатываются данные.

Боксовая комплектация (BOX) или трей (Tray/ОЕМ)?

Боксовая (BOX) комплектация представляет собой комплект:
- сам процессор;
- кулер с нанесённой термопастой (радиатор+вентилятор);
- инструкция и документация.

Отличительной особенностью BOX-комплектации является расширенная гарантия на процессор - 3 года.
BOX-процессоры лучше брать для офисных и домашних мультимедийных систем, в которых не планируется смена охлаждения на более эффективное.
Но BOX-процессоры стоят немного дороже, чем такие же TRAY.

Трей-процессор (Tray/OEM) представляет собой только процессор. Нет кулера и документов.

В отличии от BOX гарантия на Tray-процессор всего лишь 1 год.
Tray/OEM процессоры используют фирмы-сборщики готовых брендовых компьютеров. А также энтузиасты геймеры-оверклокеры, которым не принципиальны гарантия (после разгона гарантия с изделия снимается) и родное охлаждение, т.к. на процессор сразу устанавливается более эффективное.
Tray-процессоры стоят немного дешевле.

Intel или AMD?

На эту тему всегда шли ожесточенный споры на форумах и конференциях. Вообще, эта тема является вечной. Сторонники Intel будут утверждать, что эти процессоры во всех отношениях лучше, чем у конкурента. И наоборот. Сам же я являюсь приверженцем Intel.

Если сравнить одинаковые по частоте и количеству ядер процессоры двух этих компаний, то процессоры Intel будут более производительнее. Однако в ценовом диапазоне преимущество у AMD.

Если вы собираете себе бюджетную систему на минимальные финансы, то процессоры AMD - ваш выбор. Если же у вас будет игровая или производительная вычислительная система, то выбор стоит сделать в пользу Intel.

Есть ещё один момент, материнские платы для процессоров Intel также стоят дороже, а платформа AMD соответственно дешевле. Выбирая процессор для своего ПК, нужно определится с начальными приоритетами, собрать недорогую систему на AMD или более производительную, но подороже на базе Intel.

В ассортименте каждой компании есть много моделей процессоров, начиная от бюджетных, например, Celeron у Intel и Sempron/Duron у AMD, до топовых Core i7 у Intel, A10 у AMD.

В разных приложениях результаты довольно различны, так в некоторых победу одерживают процессоры AMD, в других - Intel, поэтому выбор всегда остается за пользователем.

Просто у AMD есть одно неоспоримое преимущество - это цена. И один недостаток - процессоры от AMD не столь конструктивно надёжны и немного горячее.

У Intel тоже есть преимущество - процессоры более конструктивно надёжны и стабильны, а также менее горячие. Недостаток - цена выше, чем у конкурента.

Судя по нынешним тестам игровая производительность процессоров между INTEL и AMD имеет такой вид:




Подведём итоги:

Значит, чтобы купить максимально производительный игровой процессор для компьютера, нужно выбрать процессор с:
1) наиболее новой архитектурой;
2) максимальной частотой ядра (желательно от 3 ГГц и выше);
3) максимальным размером кэша L2/L3;
4) большим набором доступных инструкций;
5) минимальным технологическим процессом изготовления.

После прочтения этой статьи, я думаю, каждый сможет определится с тем, какой процессор купить ему для своего компьютера.
Купить процессоры за большие деньги можно всегда, но если на компьютере будут выполняться только бытовые задачи, не требующие большой вычислительной мощности - деньги будут потрачены впустую.

О твечая на вопрос, на что влияет количество ядер в процессоре, хочется сразу сказать – на производительность компьютера. Но это настолько сильное упрощение, что оно даже в какой-то момент становится ошибкой.

Ладно бы пользователи просто заблуждались и ничего не теряли. Проблема в том, что неправильное понимание сути многоядерности приводит к финансовым потерям. Пытаясь увеличить производительность, человек тратит деньги на процессор с большим количеством ядер, но не замечает разницы.

Многоядерность и многопоточность

Когда мы изучали вопрос, то обратили внимание на особенность процессоров Intel – в стандартных инструментах Windows отображается разное число ядер. Это обусловлено работой технологии Hyper-Threading, которая обеспечивает многопоточность.

Чтобы вы больше не путались в понятиях, разберемся раз и навсегда:

  • Многоядерность – чип оснащен несколькими физическими архитектурными ядрами. Их можно увидеть, потрогать руками.
  • Многопоточность – несколько одновременно обрабатываемых потоков информации.
    Ядро может быть физически одно, но программные технологии на его основе создают два потока выполнения задач; два ядра – четыре потока и т.д.

Влияние количества ядер на производительность

Увеличение производительности на многоядерном процессоре достигается за счет разбиения выполнения задач. Любая современная система делит процесс на несколько потоков даже на одноядерном процессоре – так достигается та самая многозадачность, при которой вы можете, например, слушать музыку, набирать документ и работать с браузером. Очень любят и постоянно используют многопоточность следующие приложения:

  • архиваторы;
  • медиапроигрыватели;
  • кодировщики видео;
  • дефрагментаторы;
  • антивирусы;
  • графические редакторы.

Важен принцип разделения потоков. Если компьютер работает на одноядерном процессоре без технологии Hyper-Threading, то операционная система производит моментальные переключения между потоками, так что для пользователя процессы визуально выполняются одновременно. Все действия выполняются в течение миллисекунд, поэтому вы не видите серьезную задержку, если не нагружаете сильно ЦП.

Если же процессор многоядерный (или поддерживает многопоточность), то в идеале переключений не будет. Система посылает на каждое ядро отдельный поток. В результате увеличивается производительность, потому что нет необходимости переключаться на выполнение другой задачи.

Но есть еще один важный фактор – поддерживает ли сама программа многозадачность? Система может разделить процессы на разные потоки. Однако если вы запускаете очень требовательную игру, но она не оптимизирована под работу с четырьмя ядрами, но никакого прироста производительности по сравнению с двухъядерным процессором не будет.

Разработчики игр и программ в курсе об этой особенности, поэтому постоянно оптимизируют код под выполнение задач на многоядерных процессорах. Но эта оптимизация не всегда успевает за увеличением количества ядер, поэтому не стоит тратить огромные деньги на самые новые мощные процессоры с максимально возможным числом поддерживаемых потоков – потенциал чипа не будет раскрываться в 9 программах из 10.

Так сколько ядер выбирать?

Прежде чем покупать процессор с 16 ядрами, подумайте, потребуется ли такое количество потоков для выполнения задач, которые вы будете ставить перед компьютером.

  • Если компьютер приобретается для работы с документами, серфинга в интернете, прослушивания музыки, просмотра фильмов, то хватит двух ядер. Если взять процессор с двумя ядрами из верхнего ценового сегмента с хорошей частотой и поддержкой многопоточности, то не будет проблем при работе с графическими редакторами.
  • Если вы покупаете машину с расчетом на мощную игровую производительность, то сразу ставьте фильтр на 4 ядра минимум. 8 ядер с поддержкой многопоточности – самый топ с запасом на несколько лет. 16 ядер – перспективно, но велика вероятность, что пока вы раскроете потенциал такого чипа, он устареет.

Как я уже говорил, разработчики игр и программ стараются не отставать от прогресса процессоров, но пока огромные мощности просто не нужны. 16 ядер подойдут пользователям, которые занимаются рендерингом видео или серверными вычислениями. Да, в магазинах такие процессоры называют игровыми, но это только для того, чтобы они продавались – геймеров вокруг точно больше, чем тех, кто рендерит видео.

Преимущества многоядерности можно заметить только при очень серьезной вычислительной работе в несколько потоков. Если, условно, игра или программа оптимизирована только под четыре потока, то даже ваши восемь ядер будут бессмысленной мощностью, которая никак не повлияет на производительность.

Это как перевозить стул на огромной грузовой машине – задача от этого не выполняется быстрее. Но если правильно использовать имеющиеся возможности (например, загрузить кузов полностью другой мебелью), то производительность труда увеличится. Помните об этом и не ведитесь на маркетинговые штучки с добавлением слова «игровой» к процессорам, которые даже на самых последних играх не раскроют весь свой потенциал.

Ещё на сайте:

На что влияет количество ядер процессора обновлено: Январь 31, 2018 автором: admin

Наверное, каждый пользователь мало знакомый с компьютером сталкивался с кучей непонятных ему характеристик при выборе центрального процессора: техпроцесс, кэш, сокет; обращался за советом к друзьям и знакомым, компетентным в вопросе компьютерного железа. Давайте разберемся в многообразии всевозможных параметров, потому как процессор – это важнейшая часть вашего ПК, а понимание его характеристик подарит вам уверенность при покупке и дальнейшем использовании.

Центральный процессор

Процессор персонального компьютера представляет собой микросхему, которая отвечает за выполнение любых операций с данными и управляет периферийными устройствами. Он содержится в специальном кремниевом корпусе, называемом кристаллом. Для краткого обозначения используют аббревиатуру — ЦП (центральный процессор) или CPU (от англ. Central Processing Unit – центральное обрабатывающее устройство). На современном рынке компьютерных комплектующих присутствуют две конкурирующие корпорации, Intel и AMD , которые беспрестанно участвуют в гонке за производительность новых процессоров, постоянно совершенствуя технологический процесс.

Техпроцесс

Техпроцесс — это размер, используемый при производстве процессоров. Он определяет величину транзистора, единицей измерения которого является нм (нанометр). Транзисторы, в свою очередь, составляют внутреннюю основу ЦП. Суть заключается в том, что постоянное совершенствование методики изготовления позволяет уменьшать размер этих компонентов. В результате на кристалле процессора их размещается гораздо больше. Это способствует улучшению характеристик CPU, поэтому в его параметрах всегда указывают используемый техпроцесс. Например, Intel Core i5-760 выполнен по техпроцессу 45 нм, а Intel Core i5-2500K по 32 нм, исходя из этой информации, можно судить о том, насколько процессор современен и превосходит по производительности своего предшественника, но при выборе необходимо учитывать и ряд других параметров.

Архитектура

Также процессорам свойственно такая характеристика, как архитектура - набор свойств, присущий целому семейству процессоров, как правило, выпускаемому в течение многих лет. Говоря другими словами, архитектура – это их организация или внутренняя конструкция ЦП.

Количество ядер

Ядро – самый главный элемент центрального процессора. Оно представляет собой часть процессора, способное выполнять один поток команд. Ядра отличаются по размеру кэш памяти, частоте шины, технологии изготовления и т. д. Производители с каждым последующим техпроцессом присваивают им новые имена (к примеру, ядро процессора AMD – Zambezi, а Intel – Lynnfield). С развитием технологий производства процессоров появилась возможность размещать в одном корпусе более одного ядра, что значительно увеличивает производительность CPU и помогает выполнять несколько задач одновременно, а также использовать несколько ядер в работе программ. Многоядерные процессоры смогут быстрее справиться с архивацией, декодированием видео, работой современных видеоигр и т.д. Например, линейки процессоров Core 2 Duo и Core 2 Quad от Intel, в которых используются двухъядерные и четырехъядерные ЦП, соответственно. На данный момент массово доступны процессоры с 2, 3, 4 и 6 ядрами. Их большее количество используется в серверных решениях и не требуется рядовому пользователю ПК.

Частота

Помимо количества ядер на производительность влияет тактовая частота . Значение этой характеристики отражает производительность CPU в количестве тактов (операций) в секунду. Еще одной немаловажной характеристикой является частота шины (FSB – Front Side Bus) демонстрирующая скорость, с которой происходит обмен данных между процессором и периферией компьютера. Тактовая частота пропорциональна частоте шины.

Сокет

Чтобы будущий процессор при апгрейде был совместим с имеющейся материнской платой, необходимо знать его сокет. Сокетом называют разъем , в который устанавливается ЦП на материнскую плату компьютера. Тип сокета характеризуется количеством ножек и производителем процессора. Различные сокеты соответствуют определенным типам CPU, таким образом, каждый разъём допускает установку процессора определённого типа. Компания Intel использует сокет LGA1156, LGA1366 и LGA1155, а AMD — AM2+ и AM3.

Кэш

Кэш - объем памяти с очень большой скоростью доступа, необходимый для ускорения обращения к данным, постоянно находящимся в памяти с меньшей скоростью доступа (оперативной памяти). При выборе процессора, помните, что увеличение размера кэш-памяти положительно влияет на производительность большинства приложений. Кэш центрального процессора различается тремя уровнями (L1, L2 и L3 ), располагаясь непосредственно на ядре процессора. В него попадают данные из оперативной памяти для более высокой скорости обработки. Стоит также учесть, что для многоядерных CPU указывается объем кэш-памяти первого уровня для одного ядра. Кэш второго уровня выполняет аналогичные функции, отличаясь более низкой скоростью и большим объемом. Если вы предполагаете использовать процессор для ресурсоемких задач, то модель с большим объемом кэша второго уровня будет предпочтительнее, учитывая что для многоядерных процессоров указывается суммарный объем кэша L2. Кэшем L3 комплектуются самые производительные процессоры, такие как AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon. Кэш третьего уровня наименее быстродействующий, но он может достигать 30 Мб.

Энергопотребление

Энергопотребление процессора тесно связано с технологией его производства. С уменьшением нанометров техпроцесса, увеличением количества транзисторов и повышением тактовой частоты процессоров происходит рост потребления электроэнергии CPU. Например, процессоры линейки Core i7 от Intel требуют до 130 и более ватт. Напряжение подающееся на ядро ярко характеризует энергопотребление процессора. Этот параметр особенно важен при выборе ЦП для использования в качестве мультимедиа центра. В современных моделях процессоров используются различные технологии, которые помогают бороться с излишним энергопотреблением: встраиваемые температурные датчики, системы автоматического контроля напряжения и частоты ядер процессора, энергосберегающие режимы при слабой нагрузке на ЦП.

Дополнительные возможности

Современные процессоры приобрели возможности работы в 2-х и 3-х канальных режимах с оперативной памятью, что значительно сказывается на ее производительности, а также поддерживают больший набор инструкций, поднимающий их функциональность на новый уровень. Графические процессоры обрабатывают видео своими силами, тем самым разгружая ЦП, благодаря технологии DXVA (от англ. DirectX Video Acceleration – ускорение видео компонентом DirectX). Компания Intel использует вышеупомянутую технологию Turbo Boost для динамического изменения тактовой частоты центрального процессора. Технология Speed Step управляет энергопотреблением CPU в зависимости от активности процессора, а Intel Virtualization Technology аппаратно создает виртуальную среду для использования нескольких операционных систем. Также современные процессоры могут делиться на виртуальные ядра с помощью технологии Hyper Threading . Например, двухъядерный процессор способен делить тактовую частоту одного ядра на два, что способствует высокой производительности обработки данных с помощью четырех виртуальных ядер.

Размышляя о конфигурации вашего будущего ПК, не забывайте про видеокарту и ее GPU (от англ. Graphics Processing Unit – графическое обрабатывающее устройство) – процессор вашей видеокарты, который отвечает за рендеринг (арифметические операции с геометрическими, физическими объектами и т.п.). Чем больше частота его ядра и частота памяти, тем меньше будет нагрузки на центральный процессор. Особенное внимание к графическому процессору должны проявить геймеры.

Добрый день, уважаемые читатели нашего техноблога. Сегодня у нас не обзор, а некое подобие сравнения какой процессор лучше 2 ядерный или 4 ядерный? Интересно, кто круче себя показывает в 2018 году? Тогда приступим. Сразу скажем, что пальма первенства в большинстве случаев будет за устройством с большим числом физических модулей, но и чипы с 2 ядрами не так просты, как кажутся на первый взгляд.

Многие, наверное уже догадались, что рассматривать мы будем всех текущих представителей от Intel семейства Pentium Coffee Lake и народный «гиперпень» G4560 (Kaby Lake). Насколько модели актуальны в текущем году и стоит ли задуматься о покупке более производительных AMD Ryzen или тех же Core i3 с 4‐мя ядрами.

Семейство AMD Godavari и Bristol Ridge намеренно не рассматривается по одной простой причине – оно не имеет никакого дальнейшего потенциала, да и сама платформа оказалась не самой удачной, как могло предполагаться.

Зачастую эти решения покупаются либо по незнанию, либо «на сдачу» в качестве какой‐нибудь максимально дешевой сборки для интернета и онлайн‐фильмов. Но нас такое положение вещей особо не устраивает.

Отличия 2‐ядерных чипов от 4‐ядерных

Рассмотрим основные моменты, которые отличают первую категорию чипов от второй. На аппаратном уровне можно заметить, что отличается только количество вычислительных блоков. В остальных случаях, ядра объединены высокоскоростной шиной обмена данными, общим контроллером памяти для плодотворной и оперативной работы с ОЗУ.

Зачастую кэш L1 каждого ядра – величина индивидуальная, а вот L2 может быть либо един для всех, либо также индивидуален для каждого блока. Однако в таком случае дополнительно используется уже кэш‐память L3.

В теории 4‐ядерные решения должны быть быстрее и мощнее в 2 раза, поскольку выполняют на 100% больше операций за такт (возьмем за основу идентичную частоту, кэш, техпроцесс и все прочие параметры). Но на практике ситуация меняется совершенно нелинейно.

Но здесь стоит отдать должное: в многопотоке вся сущность 4 ядер раскрывается в полной мере.

Почему 2‐ядерные процессоры все еще популярны?

Если взглянуть на мобильный сегмент электроники, то можно заметить засилье 6–8 ядерных чипов, которые выглядят максимально органично и нагружаются параллельно при выполнении всех задач. Почему так? ОС Android и iOS – довольно молодые системы с высоким уровнем конкуренции, а потому оптимизация каждого приложения – залог успеха продаж девайсов.

С индустрией ПК ситуация иная и вот почему:

Совместимость. При разработке любого ПО разработчики стремятся угодить как новой, так и старой аудитории со слабым железом. На 2‐ядерных процессорах делается больший акцент в ущерб поддержки 8‐ядерных.

Распараллеливание задач. Несмотря на засилье технологий в 2018 году, заставить программу работать с несколькими ядрами и потоками ЦП параллельно все еще не просто. Если речь заходит за просчет нескольких совершенно разных приложений, то вопросов нет, но когда дело касается вычислений внутри одной программы – тут уже хуже: приходится регулярно просчитывать абсолютно разную информацию, при этом не забывая об успехе задач и отсутствии ошибок при вычислениях.

В играх ситуация еще более интересная, поскольку объемы информации разделить на равные «доли» практически нереально. В итоге получаем следующую картину: один вычислительный блок маслает на 100%, остальные 3 – ждут своей очереди.

Преемственность. Каждое новое решение основывается на предыдущих наработках. Писать код с нуля не только дорого, но и зачастую невыгодно центру разработки, поскольку «людям и этого хватит, а пользователей 2‐ядерных чипов все еще львиная доля».

Взять к примеру многие культовые проекты вроде Lineage 2, AION, World of Tanks. Все они создавались на базе древних движков, которые способны адекватно нагрузить лишь одно физическое ядро, а потому здесь основную роль при вычислениях играет только частота чипа.
Финансирование. Далеко не все могут позволить себе создать совершенно новый продукт, рассчитанный не 4,8, 16 потоков. Это слишком дорого, да и в большинстве случаев неоправданно. Взять к примеру ту же культовую GTA V, которая без проблем «съест» и 12 и 16 потоков, не говоря уже о ядрах.

Стоимость ее разработки перевалила за добрые 200 млн долларов, что само по себе уже очень дорого. Да, игра оказалась успешной, поскольку кредит доверия Rockstar в среде игроков был огромен. А если бы это был молодой стартап? Тут уже сами все понимаете.

Нужны ли многоядерные процессоры?

Давайте рассмотрим ситуацию с точки зрения простого обывателя. Большинству пользователей хватает 2 ядер по следующим причинам:

  • невысокие потребности;
  • большинство приложений работает стабильно;
  • игры – не главный приоритет;
  • низкая стоимость сборок;
  • процессоры сами по себе дешевые;
  • большинство покупает готовые решения;
  • некоторые пользователи понятия не имеют, что им продают в магазинах и чувствуют себя прекрасно.

Можно ли играть на 2 ядрах? Да без проблем, что с успехом несколько лет доказывала линейка Intel Core i3 вплоть до 7‐го поколения. Также огромной популярностью пользовались Pentium Kaby Lake, в которые впервые в истории внедрили поддержку Hyper Threading.
Стоит ли сейчас покупать 2 ядра, пусть и с 4‐мя потоками? Исключительно для офисных задач. Эпоха данных чипов постепенно уходит, да и производители начали массово переключаться на 4 полноценных физических ядра, а потому не стоит рассматривать те же Pentium и Core i3 Kaby Lake в долгосрочной перспективе. AMD так и вовсе отказалась от 2‐ядерников.

На самом деле ничего подобного не происходит. Чтобы понять, почему восьмиядерность процессора не удваивает производительность смартфона вдвое, потребуются некоторые пояснения. Будущее в сфере процессоров смартфонов уже наступило. Восьмиядерные процессоры, о которых совсем недавно можно было только мечтать, получают все большее распространение. Но, оказывается, их задача состоит не в том, чтобы повысить производительность устройства.

Эти пояснения были опубликованы в статье «Octa-core vs Quad-core: Does it make a difference?» на страницах ресурса Trusted Reviews .

Сами термины «восьмиядерный» и » четырехъядерный» отражают число ядер центрального процессора.

Но ключевое различие между этими двумя типами процессоров состоит в способе установки процессорных ядер.

В четырехъядерном процессоре все ядра способны работать одновременно, обеспечивая быструю и гибкую многозадачность, делая более ровными 3D-игры и повышая скорость работы камеры, а также осуществляя другие задачи.

Современные восьмиядерные чипы, в свою очередь, просто состоят из двух четырехъядерных процессоров, которые распределяют между собой различные задачи в зависимости от их типа. Чаще всего в восьмиядерном чипе присутствует набор из четырех ядер с более низкой тактовой частотой, чем во втором наборе. Когда требуется выполнить сложную задачу, за нее, разумеется, берется более быстрый процессор.

Более точным термином, чем «восьмиядерный» стал бы «двойной четырехъядерный». Но это звучит не так красиво и не подходит для маркетинговых задач. Поэтому эти процессоры называют восьмиядерными.

Зачем нужны два набора процессорных ядер?

В чем причина сочетания двух наборов процессорных ядер, передающих задачи один другому, в одном устройстве? Для обеспечения энергоэффективности! Данное решение необходимо для смартфона, работающего от аккумулятора, но не для головного устройства, постоянно питающегося от бортовой сети автомобиля.

Более мощный центральный процессор потребляет больше энергии и батарею приходится чаще заряжать. А аккумуляторные батареи намного более слабое звено смартфона, чем процессоры. В результате — чем более мощен процессор смартфона, тем более емкая батарея ему нужна.

При этом для большинства задач смартфона вам не понадобится столь высокая вычислительная производительность, какую может обеспечить современный процессор. Перемещение между домашними экранами, проверка сообщений и даже веб-навигация — не столь требовательные к ресурсам процессора задачи.

Но HD-видео, игры и работа с фотографиями такими задачами являются. Поэтому восьмиядерные процессоры достаточно практичны, хотя элегантным это решение назвать трудно. Более слабый процессор обрабатывает менее ресурсоемкие задачи. Более мощный — более ресурсоемкие. В итоге сокращается общее энергопотребление по сравнению с той ситуацией, когда обработкой всех задач занимался бы только процессор с высокой тактовой частотой. Таким образом, сдвоенный процессор прежде всего решает задачу повышения энергоэффективности, а не производительности

Технологические особенности

Все современные восьмиядерные процессоры базируются на архитектуре ARM, так называемой big.LITTLE.

Эта восьмиядерная архитектура big.LITTLE была анонсирована в октябре 2011 года и позволила четырем низкопроизводительным ядрам Cortex-A7 работать совместно с четырьмя высокопроизводительными ядрами Cortex-A15. ARM с тех пор ежегодно повторяла этот подход, предлагая более способные чипы для обоих наборов процессорных ядер восьмиядерного чипа.

Некоторые из основных производителей чипов для мобильных устройств сосредоточили свои усилия на этом образце «восьмиядерности» big.LITTLE. Одним из первых и наиболее примечательных стал собственный чип компании Samsung, известный Exynos. Его восьмиядерная модель использовалась начиная с Samsung Galaxy S4, по крайней мере в некоторых версиях устройств компании.

Сравнительно недавно Qualcomm также начала применение big.LITTLE в своих восьмиядерных чипах Snapdragon 810 CPU. Именно на этом процессоре базируются такие известные новинки рынка смартфонов, как HTC One M9 и G Flex 2, ставший большим достижением компании LG.

В начале 2015 года NVIDIA представила Tegra X1, новый суперпроизводительный мобильный процессор, который компания предназначает для автомобильных компьютеров. Основной функцией X1 является его вызываемый консольно («console-challenging») графический процессор, который также основывается на архитектуре big.LITTLE. То есть он также станет восьмиядерным.

Велика ли разница для обычного пользователя?

Велика ли разница между четырех- и восьмиядерным процессором смартфона для обычного пользователя? Нет, на самом деле она очень мала, считает Trasted Reviews.

Термин «восьмиядерный» вносит некоторую неясность, но на самом деле он означает дублирование четырехъядерных процессоров. В итоге получаются два работающих независимо четырехъядерных набора, объединенных одним чипом для повышения энергоэффективности.

Нужен ли восьмиядерный процессор в каждом современном устройстве? Такой необходимости нет, например Apple, обеспечивает достойную энергоэффективность своих iPhone при всего двухъядерном процессоре.

Таким образом, восьмиядерная архитектура ARM big.LITTLE является одним из возможных решений одной из самых важных задач, касающихся смартфонов — времени работы от одной зарядки батареи. Как только найдется другое решение этой задачи, так и прекратится тренд установки в одном чипе двух четырехъядерных наборов, и подобные решения выйдут из моды.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!