Компьютерные подсказки для начинающих

Глонасс определение координат. Точность определения координат в GPS-навигации и причины ошибок GPS

GPS - спутниковая система навигации, обеспечивающая измерение расстояния, времени и определяющая местоположениe. Позволяет в любом месте Земли (не включая приполярные области), почти при любой погоде, а также в космическом пространстве вблизи планеты определить местоположение и скорость объектов. Система разработана, реализована и эксплуатируется Министерством обороны США.

Краткая характеристика GPS

Спутниковая навигационная система Министерства Обороны США — GPS, называется также NAVSTAR. Система состоит из 24 навигационных искусственных спутников Земли (НИСЗ) , наземного командно-измерительного комплекса и аппаратуры потребителей. Она является глобальной, всепогодной, навигационной системой, обеспечивающей определение координат объектов с высокой точностью в трехмерном околоземном пространстве. Спутники GPS помещены на шести средневысоких орбитах (высота 20183 км) и имеют период обращения 12 часов Плоскости орбит расположены через 60° и наклонены к экватору под углом 55°. На каждой орбите находится 4 спутника. 18 спутников — это минимальное количество для обеспечения видимости в каждой точке Земля не менее 4-х НИСЗ.

Основной принцип использования системы - определение местоположения путём измерения расстояний до объекта от точек с известными координатами - спутников. Расстояние вычисляется по времени задержки распространения сигнала от посылки его спутником до приёма антенной GPS-приёмника. То есть, для определения трёхмерных координат GPS-приёмнику нужно знать расстояние до трёх спутников и время GPS системы. Таким образом, для определения координат и высоты приёмника используются сигналы как минимум с четырёх спутников.

Система предназначена для обеспечения навигации воздушных и морских судов и определения времени с высокой точностью . Она может применяться в режиме двухмерной навигации – 2D определение навигационных параметров объектов на поверхности Земли) и в трехмерном режиме — ЗD (измерение навигационных параметров объектов над поверхностью Земли). Для нахождения трехмерного положения объекта требуется измерить навигационные параметры не менее 4-х НИСЗ, а при двухмерной навигации — не менее 3-х НИСЗ. В GPS используется псевдодальномерный способ определения позиции и псевдорадиально скоростной метод нахождения скорости объекта.

Для повышения точности результаты определений сглаживаются с помощью фильтра Калмана. Спутники GPS передают навигационные сигналы на двух частотах: F1 = 1575,42 и F2=1227,60 МГц. Режим излучения — непрерывный с псевдошумовой модуляцией. Навигационные сигналы представляют собой общедоступный С/А-код (course and acquisition), передаваемый только на частоте F1, и защищенный Р-код (precision code), излучаемый на частотах F1, F2.

В GPS для каждого НИСЗ определен свой уникальный С/А-код и уникальный Р-код. Такой вид разделения сигналов спутников называется кодовым. Он позволяет бортовой аппаратуре распознавать, какому спутнику принадлежит сигнал, когда все они осуществляют передачу на одной частоте GPS предоставляет два уровня обслуживания потребителей точные определения (РРS Precise positioning Service) и стандаршые данные (SPS Standart Positioning Service) PPS основывается на точном коде, а SPS — на общедоступном. Уровень обслуживания РРS предоставляется военным и федеральным службам США, а SPS — массовому гражданскому потребителю.Кроме навигационных сигналов, спутник регулярно передает сообщения, которые содержат информацию о состоянии спутника, его эфемеридах, системном времени, прогнозе ионосферной задержки, показателях работоспособности. Бортовая аппаратура GPS состоит из антенны и приемоиндикатора. ПИ включает в себя приемник, вычислитель, блоки памяти, устройства управления и индикации. В блоках памяти хранятся необходимые данные, программы решения задач и управления работой приемоиндикатора. В зависимости от назначения используется два вида бортовой аппаратуры: специальная и для массового потребителя.Специальная аппаратура предназначена для определения кинематических параметров ракет, военных самолетов, кораблей и специальных судов. При нахождении параметров объектов в ней используются Р и С/А коды. Эта аппаратура обеспечивает практически непрерывные определения с точностью: местоположения объекта — 5+7 м, скорости — 0.05+0.15 м/с, времени — 5+15 нс

Основное применение навигационных спутниковой системы GPS:

  • Геодезия: с помощью GPS определяются точные координаты точек и границы земельных участков
  • Картография: GPS используется в гражданской и военной картографии
  • Навигация: с применением GPS осуществляется как морская, так и дорожная навигация
  • Спутниковый мониторинг транспорта: с помощью GPS ведётся мониторинг за положением, скоростью автомобилей, контроль за их движением
  • Сотовая связь: первые мобильные телефоны с GPS появились в 90-х годах. В некоторых странах, например США это используется для оперативного определения местонахождения человека, звонящего 911.
  • Тектоника, Тектоника плит: с помощью GPS ведутся наблюдения движений и колебаний плит
  • Активный отдых: есть разные игры, где применяется GPS, например, Геокэшинг и др.
  • Геотегинг: информация, например фотографии «привязываются» к координатам благодаря встроенным или внешним GPS-приёмникам.

Определение координат потребителя

Местоопределение по расстояниям до спутников

Координаты местоположения вычисляются на основе измеренных дальностей до спутников. Для определения местоположения необходимо провести четыре измерения. Трех измерений достаточно, если уметь исключать неправдоподобные решения какими-то другими доступными способами. Еще одно измерение требуется по техническим причинам.

Измерение расстояния до спутника

Расстояние до спутника определяется путем измерения промежутка времени, который требуется радиосигналу, чтобы дойти от спутника до нас. Как спутник, так и приемник генерируют один и тот же псевдослучайный код строго одновременно в общей шкале времени. Определим, сколько времени потребовалось сигналу со спутника, чтобы дойти до нас, путем сравнения запаздывания его псевдослучайного кода по отношению коду приемника.

Обеспечение совершенной временной привязки

Точная временная привязка — ключ к измерению расстояний до спутников. Спутники точны по времени, поскольку на борту у них — атомные часы. Часы приемника могут и не быть совершенными, так как их уход можно исключить при помощи тригонометрических вычислений. Для получения этой возможности необходимо произвести измерение расстояния до четвертого спутника. Необходимость в проведении четырех измерений определяет устройство приемника.

Определение положения спутника в космическом пространстве.

Для вычисления своих координат нам необходимо знать как расстояния до спутников, так и местонахождение каждого в космическом пространстве. Спутники GPS движутся настолько высоко, что их орбиты очень стабильны и их можно прогнозировать с большой точностью. Станции слежения постоянно измеряют незначительные изменения в орбитах, и данные об этих изменениях передаются со спутников.

Ионосферные и атмосферные задержки сигналов.

Существуют два метода, которые можно использовать, чтобы сделать ошибку минимальной. Во-первых, можно предсказать, каково будет типичное изменение скорости в обычный день, при средних ионосферных условиях, а затем ввести поправку во все наши измерения. Но, к сожалению, не каждый день является обычным. Другой способ состоит в сравнении скоростей распространения двух сигналов, имеющих разные частоты несущих колебаний. Если сравнить время распространения двух разночастотных компонентов сигнала GPS, то сможем выяснить, какое замедление имело место. Этот метод корректировки достаточно сложен и используется только в наиболее совершенных, так называемых «двухчастотных» приемниках GPS.

Многолучевость.

Еще один тип погрешностей — это ошибки «многолучевости». Они возникают, когда сигналы, передаваемые со спутника, многократно переотражаются от окружающих предметов и поверхностей до того, как попадают в приемник.

Геометрический фактор уменьшения точности.

Хорошие приемники снабжают вычислительными процедурами, которые анализируют относительные положения всех доступных для наблюдения спутников и выбирают из них четырех кандидатов, т.е. наилучшим образом расположенные четыре спутника.

Результирующая точность GPS.

Результирующая погрешность GPS определяется суммой погрешностей от различных источников. Вклад каждого из них варьируется в зависимости от атмосферных условий и качества оборудования. Кроме того, точность может быть целенаправленно снижена Министерством обороны США в результате установки на спутниках GPS так называемого режима S/A («Selective Availability»- ограниченный доступ). Этот режим разработан для того, чтобы не дать возможному противнику тактического преимущества в определении местоположения с помощью GPS. Когда и если этот режим установлен, он создает наиболее существенную компоненту суммарной погрешности GPS.

Вывод:

Точность измерений с помощью GPS зависит от конструкции и класса приёмника, числа и расположения спутников (в реальном времени), состояния ионосферы и атмосферы Земли (сильной облачности и т.д.), наличия помех и других факторов. «Бытовые» GPS-приборы, для «гражданских» пользователей, имеют погрешность измерения в диапазоне от ±3-5м до ±50м и больше (в среднем, реальная точность, при минимальной помехе, если новые модели, составляет ±5–15 метров в плане). Максимально возможная точность достигает +/- 2-3 метра на горизонтали. По высоте – от ±10-50м до ±100-150 метров. Высотомер будет точнее, если проводить калибровку цифрового барометра по ближайшей точке с известной точной высотой, (из обычного атласа, например) на ровном рельефе местности или по известному атмосферному давлению (если оно не слишком быстро меняется, при перемене погоды). Измерители высокой точности «геодезического класса» – точнее на два-три порядка (до сантиметра, в плане и по высоте). Реальная точность измерений обусловлена различными факторами, например – удаленностью от ближайшей базовой (корректирующей) станции в зоне обслуживания системы, кратностью (числом повторных измерений / накоплений на точке), соответствующим контролем качества работ, уровнем подготовки и практическим опытом специалиста. Такое высокоточное оборудование — может применяться только специализированными организациями, специальными службами и военными.

Для повышения точности навигации рекомендуется использовать GPS-приёмник – на открытом пространстве (нет рядом зданий или нависающих деревьев) с достаточно ровным рельефом местности, и подключать дополнительную внешнюю антенну. Для целей маркетинга, таким аппаратам приписывают «двойную надёжность и точность» (ссылаясь на, одновременно используемые, две спутниковые системы, Глонасс и Джипиэс), но реальное фактическое, улучшение параметров (повышение точности определения координат) может составлять величины — лишь до нескольких десятков процентов. Возможно только заметное сокращение времени горячего-тёплого старта и продолжительности измерений

Качество измерений джипиэс ухудшается, если спутники располагаются на небе плотным пучком или на одной линии и «далеко» – у линии горизонта (всё это называется «плохая геометрия») и есть помехи сигналу (закрывающие, отражающие сигнал высотные здания, деревья, крутые горы поблизости). На дневной стороне Земли (освещённой, в данный момент, Солнцем) — после прохождения через ионосферную плазму, радиосигналы ослабляются и искажаются на порядок сильнее, чем на ночной. Во время геомагнитной бури, после мощных солнечных вспышек — возможны перебои и длительные перерывы в работе спутникового навигационного оборудования.

Фактическая точность джипиэски зависит от типа GPS-приемника и особенностей сбора и обработки данных. Чем больше каналов (их должно быть не меньше 8) в навигаторе, тем точнее и быстрее определяются верные параметры. При получении «вспомогательных данных A-GPS сервера местоположения» по сети Интернет (путём пакетной передачи данных, в телефонах и смартфонах) — увеличивается скорость определения координат и расположения на карте

WAAS (Wide Area Augmentation System, на американском континенте) и EGNOS (European Geostationary Navigation Overlay Services, в Европе) – дифференциальные подсистемы, передающие через геостационарные (на высоте от 36 тыс.км в нижних широтах до 40 тысяч километров над средними и высокими широтами) спутники корректирующую информацию на GPS-приёмники (вводятся поправки). Они могут улучшить качество позиционирования ровера (полевого, передвижного приемника), если поблизости располагаются и работают наземные базовые корректирующие станции (стационарные приёмники опорного сигнала, уже имеющие высокоточную координатную привязку). При этом полевой и базовый приёмник должны одновременно отслеживать одноимённые спутники.

Для повышения скорости измерений рекомендуется применять многоканальный (8-и канальный и более), приёмник с внешней антеной. Должны быть видимы, как минимум, три спутника GPS. Чем их больше, тем лучше результат. Необходима, так же, хорошая видимость небосвода (открытый горизонт). Быстрый, «горячий» (длительностью в первые секунды) или «тёплый старт» (полминуты или минута, по времени) приёмного устройства — возможен, если он содержит актуальный, свежий альманах. В случае, когда навигатор долго не использовался, приёмник вынужден получать полный альманах и, при его включении, будет производиться холодный старт (если прибор с поддержкой AGPS, тогда быстрее — до нескольких секунд). Для определения только горизонтальных координат (широта / долгота) может быть достаточно сигналов трёх спутников. Для получения трёхмерных (с высотой) координат — нужны, как минимум, четыре сп-ка. Необходимость создания собственной, отечественной системы навигации связана с тем, что GPS – американская, потенциальных противников, которые могут в любой момент Ч, в своих военных и геополитических интересах, селективно отключить, «глушить», модифицировать её в каком-либо регионе или увеличить искусственную, систематическую ошибку в координатах (для иностранных потребителей этой услуги), что и в мирное время всегда присутствует.

Спутниковые системы позиционирования и навигации, изначально разрабатывавшиеся для военных нужд, в последнее время находят широкое применение в гражданской сфере. GPS/ГЛОНАСС мониторинг транспорта, наблюдение за нуждающимися в опеке людьми, контроль перемещений сотрудников, слежение за животными, отслеживание багажа , геодезия и картография – это основные направления использования спутниковых технологий.

В настоящее время существует две глобальных системы спутникового позиционирования, созданных в США и РФ, и две региональных, охватывающих Китай, страны Евросоюза и еще ряд стран Европы и Азии. В России доступен ГЛОНАСС мониторинг и GPS мониторинг.

Системы GPS и ГЛОНАСС

GPS (Global Position System, Глобальная система позиционирования) – это спутниковая система, разработка которой началась в Америке с 1977 года. К 1993 программу развернули, а к июлю 1995 – добились полной готовности системы. В настоящее время космическая сеть GPS состоит из 32 спутников: 24 основных, 6 резервных. Они вращаются вокруг Земли по средневысокой орбите (20 180 км) в шести плоскостях, по четыре основных спутника в каждой.

На земле расположена главная контрольная станция и десять станций слежения, три из которых передают спутникам последнего поколения корректировочные данные, а те распределяют их на всю сеть.

Разработка системы ГЛОНАСС (Глобальной навигационной спутниковой системы) начата еще в СССР в 1982 году. О завершении работ заявили в декабре 2015 года. Для работы ГЛОНАСС требуется 24 спутника, для покрытия территории и РФ достаточно 18, а общее число спутников, находящихся в данный момент на орбите (включая резервные) – 27. Они также движутся по средневысокой орбите, но на меньшей высоте (19 140 км), в трех плоскостях, по восемь основных спутников в каждой.

Наземные станции ГЛОНАСС расположены в России (14), Антарктиде и Бразилии (по одной), намечается развертывание ряда дополнительных станций.

Предшественником системы GPS была система Transit, разработанная в 1964 году для управления запуском ракет с подводных лодок. Она могла определить местонахождение исключительно неподвижных объектов с точностью до 50 м, а единственный спутник находился в поле видимости всего один час в сутки. Программа GPS ранее носила названия DNSS и NAVSTAR. В СССР создание навигационной спутниковой системы велось с 1967 года в рамках программы «Циклон».

Основные отличия системs мониторинга ГЛОНАСС от GPS:

  • американские спутники движутся синхронно с Землей, а российские – асинхронно;
  • разная высота и количество орбит;
  • разный угол их наклона (около 55° для GPS, 64,8° для ГЛОНАСС);
  • разный формат сигналов и рабочие частоты.
  • Преимущества системы GPS

  • GPS – старейшая из существующих систем позиционирования, приведена в полную готовность раньше российской.
  • Надежность обусловлена использованием большего числа резервных спутников.
  • Позиционирование происходит с меньшей погрешностью, чем у ГЛОНАСС (в среднем 4 м, а для спутников последнего поколения – 60–90 см).
  • Множество устройств поддерживает систему.


Преимущества системы ГЛОНАСС

  • Положение асинхронных спутников на орбите более стабильное, что облегчает управление ими. Регулярное внесение корректив не требуется. Данное преимущество важно для специалистов, а не потребителей.
  • Система создана в России, поэтому обеспечивает уверенный прием сигнала и точность позиционирования в северных широтах. Это достигается за счет большего угла наклона спутниковых орбит.
  • ГЛОНАСС – это отечественная система, и останется доступной для россиян в случае отключения GPS.
  • Недостатки системы GPS

  • Спутники вращаются синхронно вращению Земли, поэтому для точного позиционирования требуется работа корректирующих станций.
  • Низкий угол наклона не обеспечивает хорошего сигнала и точного позиционирования в полярных областях и высоких широтах.
  • Право управления системой принадлежит военным, а они могут искажать сигнал или вообще отключить GPS для гражданских лиц или для других стран в случае конфликта с ними. Поэтому хотя GPS для транспорта точнее и удобнее, а ГЛОНАСС – надежнее.
  • Недостатки системы ГЛОНАСС

  • Разработка системы началась позже и до недавнего времени велась со значительным отставанием от американцев (кризис, финансовые злоупотребления, хищения).
  • Неполный комплект спутников. Продолжительность службы российских спутников ниже, чем американских, они чаще нуждаются в ремонте, поэтому точность навигации в ряде областей снижается.
  • Спутниковый мониторинг транспорта ГЛОНАСС дороже, чем GPS из-за высокой стоимости устройств, адаптированных к работе с отечественной системой позиционирования.
  • Недостаток программного обеспечения для смартфонов, КПК. Модули ГЛОНАСС проектировали для навигаторов. Для компактных портативных устройств на сегодняшний день более распространенный и доступный вариант – это поддержка GPS-ГЛОНАСС или только GPS.


Резюме

Системы GPS и ГЛОНАСС являются взаимодополняемыми. Оптимальное решение – это спутниковый GPS-ГЛОНАСС мониторинг. Устройства с двумя системами, например, GPS-маркеры с ГЛОНАСС-модулем «М-Плата» обеспечивают высокую точность позиционирования и уверенную работу. Если для позиционирования исключительно по ГЛОНАСС погрешность в среднем составляет 6 м, а для GPS – 4 м, то при использовании двух систем одновременно она снижается до 1,5 м. Но такие приборы с двумя микрочипами стоят дороже.

ГЛОНАСС разработана специально для российских широт и потенциально способна обеспечить высокую точность, из-за ее недоукомплектованности спутниками реальное преимущество пока на стороне GPS. Плюсы американской системы – это доступность и широкий выбор устройств с поддержкой GPS.

Информация о разнице между показаниями штатных одометров и спутниковых навигаторов.

Наличие расхождений между показаниями штатного одометра и данных GPS/ГЛОНАСС - одометра могут служить поводом для возникновения конфликтных ситуаций. Настоящая статья призвана прояснить основные причины возникновения подобных расхождений в показаниях приборов.

Одометр — прибор для измерения количества оборотов колеса. При помощи него может быть измерен пройденный путь транспортным средством. Одометр преобразует пройденный путь в показания на индикаторе. Обычно одометр состоит из счётчика с индикатором и датчика, связанного с вращением колеса. Видимая часть одометра — его индикатор. Механический индикатор содержит ряд колёсиков (барабанов) с цифрами на приборной доске автомобиля. Каждое такое колёсико разделено на десять секторов, на каждом секторе написано по цифре. По мере увеличения пройденного пути транспортным средством колёсики вращаются, образуя число, обозначающее пройденную дистанцию.

Счётчик может быть механическим, электромеханический или электронным, в т.ч. основанным на бортовой электронно-вычислительной техники. Для каждого из вышеперечисленных видов прибора установлены свои параметры и погрешности.

Прежде всего, отметим, что бортовые одометры всех видов не относятся к классу точных приборов. Для каждого вида данных приборов установлены допустимые погрешности. Здесь необходимо сделать важные замечания: во-первых, данные погрешности установлены только для самих приборов, все конструктивные изменения, а так же физический износ некоторых узлов автомобиля в эту погрешность не включены, во-вторых, по техническим требованиям спидометры не могут занижать показания, поэтому и одометр конструктивно связанный со спидометр так же как правило, дает незначительно, но завышенные показания.

Спортивный одометр без какой-либо калибровки завышает скорость и расстояния на 3.5 %, что и требуется согласно международной конвенции о дорожном движении и ГОСТ 12936-82 , ГОСТ 1578-76, ГОСТ 8.262-77. На обычные одометры таких стандартов не существует (они никогда не разрабатывались, в силу отсутствия требований по точности данных приборов).

Погрешность штатного спидометра - величина, рассчитанная опытным путем на заводе изготовителе автомобиля. О размерах погрешностей разных типов одометров написано ниже.

Механический одометр имеет собственную погрешность до 5%. В зависимости от условий эксплуатации транспортного средства, износа узлов и агрегатов, использования нештатных запчастей суммарная погрешность прибора может достигать 12%-15%.

Электромеханические одометры - основаны на показаниях электронного измерителя числа импульсов от датчика скорости, т.е. показания прибора пропорциональны числу импульсов за единицу времени. Эти приборы несколько точней механических, но все же, погрешность 5-7% у них случается, ведь они избавились лишь от слабых мест самой механики (люфтов, капризов троса, катушки, возвратной пружинки т.п.).

Полностью электронные одометры совершенней электромеханических, за счет улучшенного механизма контроля вращения ведущего колеса. В тоже время сам принцип контроля пройденного пути остается неизменным, и даже точная электроника находится в зависимости от состояния ходовой части автомобиля. Суммарная погрешность данных приборов редко превышает 5% в случае если проводится дополнительная калибровка на тестовом участке пути (на заводе-изготовителе эта процедура не происходит).

Реально, на точность измерения пройденного автомобилем расстояния любым одометром влияет большое число внешних факторов:

Высота колеса. Разница в высоте протектора в 1 см, например, даст на 60 км пробега автомобиля разницу в пробеге в 1,177 км. (несложно проверить, вооружившись калькулятором и формулами геометрии из курса средней школы - примем диаметр одного колеса в 1 м, второго - 1.02 м. Первое совершит 19.108 оборотов, второе - 18.733. Каждый оборот - 3.14 м, разница - 1177 м). И эту разницу мы получаем только при одном сантиметре! Поэтому одометр на автомобиле со стёртым протектором покажет большее значение по сравнению с периодом, когда автомобиль ездил на новых шинах. Ещё важно знать на какой тип колёс рассчитан одометр, если поставить другой тип колёс по диаметру то будут совсем другие данные по скорости и пройденному пути относительно реальных, так как и спидометр и одометр считают количество оборотов колеса и калькулируют с данными о диаметре колеса заложенными заводом производителем.

Колеса отличаются по диаметру: 315/70 и 315/80, например, дадут сразу разницу в диаметре в 6.3 см. со всеми вытекающими последствиями и погрешностями.

Загрузка авто - При полной или чрезмерной загрузке автомобиля, шина проминается по-разному, отсюда изменяется диаметр колеса и соответственно имеем качество погрешности описанное выше.
Давление в шинах - шина проминается по разному при штатном и нештатном давлении.

Скольжение колес по дороге - рассуждая логически, при пробуксовках, скольжениях, или же наоборот -торможении на льду, автомобиль или находится на месте при вращении колес, либо наоборот - движется при стопоре колес.

Система мониторинга транспорта на основе GPS/ГЛОНАСС навигации работает следующим образом. Модуль GPS/ГЛОНАСС определяет данные о своем местонахождении, а затем при помощи мобильной связи по каналам Internet отсылает эти данные на сервер, где они хранятся, обрабатываются с электронными картами, и выстраивается картина передвижения транспортного средства. При этом совершенно не важно, с какой скоростью передвигается автомобиль с блоком. Основной принцип использования системы — определение местоположения путём измерения расстояний до объекта от точек с известными координатами — спутников. Расстояние вычисляется по времени задержки распространения сигнала от посылки его спутником до приёма антенной GPS/ГЛОНАСС - приёмника. То есть, для определения трёхмерных координат GPS/ГЛОНАСС - приёмнику нужно знать расстояние до трёх спутников и время GPS/ГЛОНАСС системы. Таким образом, для определения координат и высоты приёмника, используются сигналы как минимум с четырёх спутников.

Важную роль играет и просчет получаемых координат, который позволяет уменьшить возможные неточности и представить точную картину передвижения транспортного средства. Учитывая точность самой системы GPS/ГЛОНАСС - навигации, а так же разного рода программные механизмы позволяющие отсечь крупные ошибки, погрешность системы мониторинга не превышаем в целом 4%. Это дает возможность максимально скорректировать данные по пробегу транспортного средства.

Общим недостатком использования любой радионавигационной системы является то, что при определённых условиях сигнал может не доходить до приёмника, или приходить со значительными искажениями или задержками. Например, практически невозможно определить своё точное местонахождение в подвале или в тоннеле. Так как рабочая частота GPS/ГЛОНАСС лежит в дециметровом диапазоне радиоволн, уровень приёма сигнала от спутников может серьёзно ухудшиться под плотной листвой деревьев или из-за очень большой облачности. Нормальному приёму сигналов GPS/ГЛОНАСС могут повредить помехи от многих наземных радиоисточников, а также от магнитных бурь. По официальным данным чистая погрешность самого навигатора находится в пределах 10-15 метров.

Также не исключены ошибки в самой системе GPS/ГЛОНАСС позиционирования.

ГЛОНАСС/GPS для всех: испытания на точность и доступность позиционирования однокристального приёмника в сложных условиях эксплуатации

Philip Mattos (Филипп Маттос)
Перевод: Андрей Русак
support@сайт
Виктория Буланова
[email protected]
Однокристальный GNSS приёмник, который сейчас вышел в серийное производство, был испытан в условиях плотной городской застройки с целью демонстрации преимуществ мультисистемной (ГЛОНАСС и GPS) работы в качестве потребительского приёмника. Применение комбинированной системы ГЛОНАСС/GPS началось с нескольких десятков тысяч приёмников для геодезической съёмки, на данный момент работают миллионы таких потребительских устройств. Благодаря росту количества персональных устройств спутниковой навигации, появлению автомобильных ОЕМ-систем и мобильных телефонов удалось достичь существенных объёмов на рынке в 2011 году. Уверенность в перспективности развития рынка навигационных пользовательских устройств подталкивает производителей высокочастотных специфических компонентов, таких как антенны и ПАВ-фильтры, к увеличению объёмов производства и оптимизации стоимости товаров. Одной из первых российских компаний, которая выпустила на рынок модули, выполненные на основе приемника STM, стала НАВИА. ГЛОНАСС-модули НАВИА уже зарекомендовали себя как надёжные, удобные модули для производства готовых терминалов навигации и управления движущимися объектами. Различные тесты модулей, показали, что ML8088s и GL 8088s отвечают всем заявленным характеристикам производителя и могут успешно применяться в устройствах мониторинга.

Испытания однокристального ГЛОНАСС/GPS приёмника в Лондоне, Токио и Техасе были проведены для того, чтобы показать, что совместное использование всех видимых спутников ГЛОНАСС в купе с GPS даёт лучшую доступность позиционирования в условиях плотной городской застройки, а в случае плохой доступности позиционирования — лучшую его точность.

Очевидно, что мультисистемные приёмники очень востребованы на потребительском рынке. Они могут обеспечить работу по большему числу спутников в условиях «городских каньонов», где в зоне видимости имеется только часть небесной полусферы и требуется высокая надёжность в отсеивании лишних сигналов, когда качество полезных сигналов сильно ухудшено из-за многократных переотражений и аттеньюаций. Далее кратко описываются трудности интеграции системы ГЛОНАСС (и в дальнейшем GALILEO), на основе которой выпускаются экономичные устройства для массового потребителя. Для такого рынка, с одной стороны, стоимость стоит на первом месте, а с другой стороны, предъявляются высокие требования к производительности, связанные с низким уровнем сигнала, ограничением в энергопотреблении, коротким временем «холодного» старта и стабильности позиционирования.

Цель состояла в том, чтобы, используя все доступные спутники, улучшить работу потребительских навигационных устройств в условиях помещений и городской застройки. 2011 год прошёл под эгидой поддержки ГЛОНАСС, развитие данной спутниковой системы опережает GALILEO примерно на три года. При проектировании приёмников, важно было преодолеть проблемы несовместимости аппаратной поддержки ГЛОНАСС и GPS. То есть частотно-модулированный сигнал ГЛОНАСС потребовал более широкой полосы частот, чем сигналы импульсно-кодовой модуляции, используемые GPS, полосовых фильтров с разными центрами частот и разной скоростью передачи элементов сигнала. И все это — без значительного увеличения стоимости приемника.

При идеальных условиях эксплуатации, спутники из дополнительных группировок будут малоэффективны, так как доступность позиционировани я приближается к 100 процентам при использовании только GPS. Присутствие в ионосфере используемых для позиционирования семи, восьми или девяти спутников в режиме фиксации минимизирует суммарную ошибку и дает правильные координаты.

В экстремальных условиях эксплуатации применение только GPS позволяет определить положение, но использование при этом только трёх, четырёх, пяти спутников, сосредоточенных в узкой части небесной полусферы, приводит к плохим значениям DOP . Увеличение числа спутников значительно повышает точность, вследствие чего улучшается DOP и усредняется количество многолучевых ошибок. Ограничение числа позиционируемых спутников приводит к наложению многолучевых ошибок на определение координат усиливаемых DOP. Добавление второй или третьей спутниковой группировки предполагает расширение числа видимых спутников, и таким образом, в процессе определения координат участвует большее количество спутников, что приводит к уменьшению ошибок.

Поэтому в экстремальных условиях, где использование только GPS недостаточно, дополнительное применение спутников ГЛОНАСС (и в дальнейшем GALILEO) повышает доступность позиционирования до 100% (за исключением подземных туннелей).

Фактически, доступность – это самоулучшающаяся петля положительной обратной связи: поскольку спутники постоянно отслеживаются, то, даже будучи отклонении их от участия в текущем решении задачи позиционирования с помощью алгоритмов RAIM /fault и FDE, не требуется повторного их поиска — они уже стали доступными для применения ранее. Если процесс позиционирования не прерывается, то можно продолжать точно предсказывать фазы для спутников с закрытыми препятствиями, что позволяет осуществлять мгновенное использование их при выходе «из тени», так как при этом не требуется приём дополнительной информации для их поиска и фиксации.

Дополнительные видимые спутники очень важны для потребителя, в частности, — как пример, при «self-assistance» («самообслуживании»), когда минимальная группа представлена пятью спутниками, а не тремя-четырьмя, чтобы автономно установить, что все спутники «правильные», с использованием методов автономного контроля целостности приёмника (RAIM). «Самообслуживание» имеет ещё более значительные преимущества у ГЛОНАСС: не нужно никакой инфраструктуры типа assisted-серверов, всегда приводящих к задержке в обслуживании. Метод ГЛОНАСС передачи параметров спутниковых орбит в Кеплеровском формате также очень подходит для алгоритма «самообслуживания».

Значение испытаний

Предыдущие попытки охарактеризовать преимущества мультисистемных устройств в городских условиях были приостановлены в связи с необходимостью использования профессиональных приёмников, не предназначенных для таких уровней сигнала, а также пришлось бы получать отдельные результаты для каждой группы или пожертвовать одним из спутниковых измерений для измерения времени. Эти обстоятельства не позволили продолжить испытания устройств, которые были запланированы для выхода на массовый рынок.

Выход нового мультисистемного решения имеет большое значение, так как тестируемый приёмник является по-настоящему массовым устройством, если он имеет повышенную чувствительность и полностью готовый как для измерения, так и для вычисления. Таким образом, автор этой статьи впервые сообщает абсолютно достоверные результаты испытаний.

Предыстория

Испытания проводились на однокристальном приёмнике GNSS Teseo-II (STA-8088). Краткая история: это продукт 2009 года выпуска, производства STM, основанный на Cartesio+ с уже включенными функциями GPS/GALILEO и процессором цифровых сигналов (DSP), он был готов для имплантирования функции ГЛОНАСС, что привело к созданию чипа Teseo-II (продукт 2010 года). Результаты испытаний с реальными спутниковыми сигналами были получены на Baseband-чипе в FPGA реализации уже в конце 2009 года, а в 2010 году – уже при использовании готового чипа.

Текущий дизайн потребовал введения дополнительных незначительных доработок схемы. Необходимые аппаратные и программные изменения DSP являлись небольшими и включены в следующее запланированное обновление схемы TeseoII. Реализация схемы RF-части потребовала гораздо большего внимания, чем двухканальная схема с каскадом промежуточной частоты (IF) и аналого-цифровой преобразователем (ADC), с дополнительным преобразованием частоты и более широкой полосы частот фильтра IF. Но, так как область кристалла с находящейся на ней RF-частью в общем объеме очень мала, то даже 30% увеличения схемы здесь незначительны для всей схемы. В соответствии с тем, что дизайн чипа рассчитан на общую однокристальную систему (RF и BB, от антенны до позиционирования, скорости и синхронизации (PVT)), поэтому общая площадь кристалла для 65-нанометрового процесса очень мала.

С коммерческой точки зрения, включение всех трёх спутниковых групп (GPS /ГЛОНАСС и GALILEO ) в одну микросхему ново для потребителя. Многие из присутствующих на российском рынке компаний остановились на двухсистемном подходе, лишь бы удовлетворить требованиям правительства РФ о необходимости работы в системе ГЛОНАСС. Они не задумывались о будущем глобально, когда в мире будет присутствовать несколько группировок позиционирования и возможно каждая из стран — участниц этого процесса будет выдвигать в дальнейшем требования к преимущественному использованию своей – родной — системы.

В этом плане решение Teseo II является революционным, т.к. заранее подготовлено к такому сценарию и уже сейчас может принимать системы ГЛОНАСС/ GPS / GALILEO / QZSS и SBAS .

Технически, включение в группу независимых каналов приёма и обработки системы ГЛОНАСС — тоже новинка, в то время как комбинация GPS/GALILEO – уже стандартная практика. Для достижения такой гибкости также потребовались новые технические решения, учитывающие различающиеся аппаратные RF задержки, различия в скорости передачи сигналов. В дополнение к этому, существуют уже ставшие хорошо известными коррекция универсального глобального времени (UTC) и проблема коррекции геоида.

Прямой переход на одночиповое решение (RF + Baseband + CPU) встречается нечасто: это важный технологический прорыв. Доверие к этому шагу обусловлено опытом использования RF части и отработанной схемой Baseband процессора. За основу были взяты внешний RF интерфейс STA5630 и модифицированный GPS/GALILEO DSP, которые ранее были применены в Cartesio+.

Надёжность использования STA5630/Cartesio+ была доказана при массовом производстве в виде отдельных схем еще до выхода однокристальных решений «три-в-одном».

В отличие от двухчиповых решений GPS /ГЛОНАСС модулей, присутствующих на российском рынке, одночиповое решение от STMicroelectronics (Teseo II ) STA 8088 FG обладает гораздо большей надёжностью, помехозащищенностью, меньшим энергопотреблением и конечно, меньшими размерами (модуль ML 8088 s имеет размеры 13 х15 мм).

Поддержка ГЛОНАСС и GALILEO – это шаг вперед относительно предыдущего поколения аппаратной части RF. GALILEO совместим с GPS и, поэтому можно было использовать существующую схему, а ГЛОНАСС потребовал дополнительных изменений. См. рисунки 1 и 2.

Рисунок 1.


Рисунок 2. Изменения Baseband части для поддержки ГЛОНАСС

В RF-части, LNA, RF-усилитель и первый смеситель были объединены в один канал. Это позволило сэкономить на количестве выводов чипа и свести к минимуму энергопотребление. Более того, это позволило сохранить внешние издержки для производителей оборудования. Сигнал ГЛОНАСС, сниженный в первом смесителе до 30 МГц, поступает в канал вторичной обработки (показан коричневым цветом) и микшируясь до 8 МГц, подаётся на отдельный ADC и, далее в Baseband часть.

В Baseband части предусматривается дополнительный предварительный каскад обработки (обозначен коричневым цветом), который преобразует сигнал в 8 МГц, что необходимо для подачи в Baseband и пропускает полученный сигнал через режекторный фильтр защиты от заградительных помех, а также снижает частоту дискретизации до стандартного значения 16, пригодной для обработки в аппаратном обеспечении DSP.

Существующие устройства захвата и каналы слежения могут выбрать куда и когда принять сигналы GPS/GALILEO или ГЛОНАСС, что делает очень гибким распределение каналов по отношению к спутниковым группировкам.

Менее заметным, но очень важным моментом по отношению к производительности системы является программное обеспечение, которое контролирует данные аппаратные ресурсы, во-первых, чтобы замкнуть петли PLL слежения и провести измерения, а во-вторых, фильтр Кальмана, который преобразует измеренное в данные PVT, необходимые пользователю.

Все это претерпело структурную модификацию, чтобы обеспечить поддержку работы со многими спутниковыми группировками, а не только с ГЛОНАСС. В этом случае расширение программного обеспечения для приёма будущих глобальных навигационных систем станет этапом эволюционного развития, и не потребует серьезных доработок самого кристалла.

Программное обеспечение работало на реальном кристалле с 2010 года, но при использовании сигналов от любого симулятора или статических установленных на крыше антенн, были доступны только GPS данные, которые были настолько хороши, что не позволяли каких-либо манёвров для исследования по улучшению системы. В начале 2011 года стали доступны предпроизводственные образцы чипов и отладочные платы с антеннами в корпусе, что сделало возможным проведение мобильных полевых испытаний во всем мире.

Фактические результаты

До рождения кристалла с мультисистемным приёмом, результаты уже были видимы по пред-варительным испытаниям, проведенных с использованием профессиональных приемников с раздельными измерениями GPS и ГЛОНАСС. Тем не менее, эти испытания не дали хороших данных для потребительского приемника, потому что они показали низкую чувствительность. Приемники требовали достаточно чистого сигнала для управления PLL, но это нельзя было сделать в условиях города, и что самое главное, приемники создавали два отдельных решения при наличии постоянного дополнительного спутника для решения межсистемных различий во времени. Несвязанные решения не позволяли предсказывать положение спутников одной группировки за счёт вычисления их положения, опираясь на координаты, рассчитанные с применением другой, что является одним из главных преимуществ мультисистемных приёмников GNSS.

Моделирование видимых спутников было поведено в 2010 году в условиях плотной городской застройки в Италии, центре Милана. Результаты, усредняемые каждую минуту за полные 24 часа представлены в Таблице 1. Среднее число видимых спутников увеличивалось от 4,4 только с GPS, до 7,8 для GPS+ГЛОНАСС, с количеством точек «без фиксации позиции» (No Fix) равным нулю. Причем в режиме «только с GPS» было получено 380 ложных точек что составило около 26% общего времени приёма.

Таблица 1. Точность и доступность GPS и GPS +ГЛОНАСС, в среднем свыше 24 часов

Однако доступность спутников сама по себе не являлась самоцелью. Наличие большего количества спутников в одном и том же небольшом участке небесной полусферы над городской застройкой может быть недостаточным из-за геометрического снижения точности. Для изучения этих данных, геометрическая точность, представленная HDOP . При совместном использовании ГЛОНАСС и GPS результат оказался в 2,5 раза лучше.

Предыдущие исследования показали, что в отдельных городах, где проводились испытания, были доступны от двух до трех дополнительных спутников, но один из них использовался для временного определения. При применении совмещенного на одном кристалле высокочувствительного приемника мы предполагали, что будут задействованы от четырех или пять дополнительных спутников.

Фактические результаты намного превзошли наши ожидания. Во-первых, появились сигналы от многих других спутников, так как все предыдущие испытания и симуляции исключали отраженные сигналы. Имея дополнительные сигналы, приёмник значительно улучшил показатели DOP. Эффект влияния отражений на точность был существенно снижен, во-первых за счёт лучшей геометрии позиционирования, а во-вторых за счёт способности алгоритмов FDE/RAIM поддерживать устойчивость слежения за спутниками. К тому же уменьшилось количество ложных сигналов, способных исказить данные о координатах.

Результаты, представленные здесь, получены от полностью интегрированного высокочувствительного приемника, каким является приёмник NAVIA ML8088s, выполненного на чипе STA8088s. Он оптимизирован для обнаружения сигналов даже очень низкого уровня и получения результатов, полученных непосредственно от всех спутников, находящихся в поле зрения, вне зависимости от группировки. Это обеспечивает 100-процентную доступность спутников и намного повышает точность в сложных условиях городской застройки.

Доступность

Применение высокочувствительных приемников, которые не зависят от петель фазовой синхронизации (PLL), обеспечивает полную доступность в современных городах, даже при отражении от поверхности стекла в современных зданиях. Поэтому теперь уже требуются некоторые другие определения доступности, кроме как «доступны четыре спутника». Например, отслеживание спутников на заданном уровне качества сигнала, результат которого зависит от DOP. Даже DOP бывает трудно оценить, поскольку фильтр Кальмана присваивает разные веса каждому спутнику, которые не учитываются при расчете DOP. А также, помимо мгновенных измерений, данный фильтр использует историческое положение и текущую скорость, что оставляет на неизменном уровне точность позиционирования.

На рисуноке 3 показана доступность спутников в режиме слежения. Испытания проводились в финансовом районе Лондона в мае 2011 г.

Отслеживаемые спутники – GPS , ГЛОНАСС, GPS +ГЛОНАСС

Рисунок 3. GPS (отмечено голубым) против ГЛОНАСС (отмечено красным) и всех отслеживаемых спутников GNSS (отмечено зеленым).

Как видно на рис. 3, всего присутствует 7-8 спутников ГЛОНАСС и 8-9 спутников GPS, то есть мульти-GNSS — около 16 спутников. Был период, когда сигналы спутников не улавливались: во время прохождения туннеля Blackfriars Underpass, отметка времени примерно 156400 секунд. В других районах города, по времени примерно в 158500 и 161300 секунд, видимость снижалась до четырех спутников, но общее их число никогда не было меньше восьми. Следует обратить внимание, что тестирование проходило в старом городе, где находятся в основном каменные здания, поэтому отражающие сигналы слабее, чем от зданий из стекла и металла.

Несмотря на то, что вне туннелей доступность спутников составляет 100%, она может быть ограничена DOP или точностью позиционирования. Как видно на рисунке 4, по результатам других испытаний в Лондоне, мульти-GNSS DOP остается ниже 1, как должно быть при 10-16-ти видимых спутников, в то время как DOP только GPS часто выше 4, при этом какие-либо искажения из-за отражений и слабых сигналов значительно увеличивают DOP до 10 в пике.

GPS в сравнении с GNSS

Рисунок 4. Только GPS против совмещённых GPS /ГЛОНАСС показателей снижения точности

Так как испытания, проведенные в мае 2011 года, были достаточно несложными для создания стрессовых условий, при которых GPS нуждался бы в поддержке мульти-GNSS, было проведено новое тестирование в августе 2011 года. Как показано на аэрофотоснимке (рис.5), испытания проводились в современной высотной части города, Canary Wharf. Кроме того, дороги в городе очень узкие, что еще больше осложнило городские испытания. Здания из стекла и металла современной части города, как правило, дают лучшее отражение, чем каменные здания, вызывая «зашкаливание» алгоритмов RAIM и FDE.

Рисунок 5. GPS против GNSS, Лондон, Canary Wharf

Получение результатов режима «только GPS» было затруднено (показано зеленым цветом), особенно в закрытой части станции Docklands, центральный левый, нижний путь.

Рисунок 6 показывает те же реальные результаты испытаний, отображенные на схематичной карте дорог.

Рисунок 6. GPS против GNSS, Лондон, Canary Wharf, схематичная карта

Тестирование мульти-GNSS (голубого цвета) показало очень хорошие результаты, особенно на северной (в восточном направлении) части петли (вождение в Великобритании левостороннее, таким образом, по часовой стрелке образуется односторонняя петля).

Рисунок 7. а) Испытания в Токио: Teseo-I (GPS) против Teseo-II (GNSS); б) DOP при испытаниях в Токио

Дальнейшие испытания были проведены в офисах STMicroelectronics по всему миру. Рисунок 7а показывает испытания в Токио, где желтым цветом обозначено результаты тестов предыдущего поколения чипов без ГЛОНАСС, и красным — Teseo-II с GPS+ГЛОНАСС.

Рисунок 7б дает некоторое разъяснение определения точности, показывая DOP в ходе испытания. Можно увидеть, что Teseo-II DOP редко были выше 2, но показатели режим «только GPS» (Teseo-I)находились между 6 и 12 в сложной северной части, обведенной в кружок.

Повторяем, что алгоритм испытаний является несложным для GPS, но точность определения затруднена.

Дальнейшие испытания в Токио выполнены на более узких городских улицах в тех же условиях тестирования, показаны на Рисунке 9. Голубым цветом – только GPS, красным – GPS+ГЛОНАСС, наблюдается значительное улучшение результатов.

На Рисунке 9 применена та же цветовая схема для отображения результатов тестирования в Далласе, на этот раз с приемником GPS конкурента против Teseo-II с конфигурацией GPS+ГЛОНАСС, снова наблюдаем очень хорошие результаты.

Рисунок 8. Только GPS (голубой) против мульти- GNSS (красный), Токио .

Рисунок 9. Только GPS (голубой, приемник конкурента-производителя) в сравнении с GNSS (красный), Даллас.

Другие спутниковые группировки

Хотя аппаратное обеспечение Teseo II поддерживает и GALILEO , пока нет доступных спутников GALILEO (на сентябрь 2011 г.), так что устройства на базе этого чипа, находящиеся в использовании по всему миру, до сих пор не имеют загруженного программного обеспечения для обслуживания этой спутниковой группировки. Однако если наступит время применения GALILEO , всегда есть возможность сделать обновление ПО.

Японская система QZSS имеет один доступный спутник, передающий традиционные GPS-совместимые сигналы, SBAS сигналы и L1C BOC сигналы. Teseo-II с помощью функций текущего загруженного ПО может обрабатывать первые два из них, и пока применение SBAS бесполезно в условиях городской застройки, так как отражения сигналов и помехи являются локальными и не улавливаемыми, целью системы QZSS является предоставление спутника с очень большим углом, чтобы данный спутник всегда был доступен в городской местности.

Рисунок 10 показывает испытание в Тайбэе (Тайвань) с использованием GPS (желтый цвет) в сравнении с мульти-GNSS (GPS плюс один спутник QZSS (красный цвет)), и истинные значения (лиловый цвет).

Рисунок 10. Только GPS (желтый) в сравнении с мульти- GNSS (GPS + QZSS (1 спутник, красный)), истинное значение — лиловый, Тайбэй
Дальнейшая работа

Испытания будут продолжены для получения более точных количественных результатов. Тестирование пройдет в Великобритании, где есть схемы дорог c векторными данными для отображения реальных направлений передвижения. Планируется модификация аппаратной части в целях поддержки системы Compass и GPS-III (L1-C), в дополнение к уже имеющемуся GALILEO. Поиск и отслеживание этих сигналов уже было продемонстрировано с использованием предварительно записанных транслируемых сэмплов сценариев на имитаторах сигналов GNSS.

В 2011 году система Compass была не доступна. В связи с чем работы над кремниевым исполнением Teseo-II были ориентированы, в основном, на максимальную гибкость в условиях различной кодовой длины, например, BOC или BPSK, что позволило, при наличии того или иного загруженного программного обеспечения для конфигурации функций аппаратного обеспечения DSP, получить возможность совместимости различных спутниковых группировок.

Результаты работ над совместимостью текущей версии мульти-GNSS ЧИПа были слабые: из-за того что центральная частота системы Compass 1561 МГц может поддерживаться только с помощью управляемого напряжением генератора и PLL, система Compass не может работать одновременно с другими спутниковыми группировками. Кроме того, скорость передачи кодов в системе Compass составляет 2 млн. бит/с, что тоже не поддерживается Teseo-II и может быть приведена к стандартной за счет использования внешних альтернативных схем, а это означает серьезные потери сигналов.

Так что работы по поддержке Compass актуальны только для исследований и разработки программного обеспечения, для односистемного решения, или с использованием отдельного RF-чипа.

Распространенный по всему миру сигнал Compass, который находится в формате сигнала GPS/GALILEO на несущей частоте и на кодовой длине и скорости, будет полностью совместим внутри одной мульти-GNSS схемы, но скорее всего не раньше 2020 года.

Испытания в городских условиях будут повторяться по мере развития группировки GALILEO . При наличии 32 каналов можно использовать деление 11/11/10 (GPS / GALILEO /ГЛОНАСС), при наличии полного состава всех трех групп, но в рамках современных требований к навигационным услугам комбинация 14/8/10 является более чем достаточной.

Заключение

Мультисистемный приемник может включать в себя GPS, ГЛОНАСС и GALILEO при минимально увеличенной стоимости. Имея 32 канала слежения и до 22 видимых спутников, даже в самых суровых городских условиях можно обеспечить 100% доступность и приемлемую точность позиционирования. При проведении тестирования обычно видны 10–16 спутников. Множественность измерений позволяет сделать алгоритмы RAIM и FDE гораздо более эффективными при устранении плохо отражаемых сигналов, а также сводит к минимуму геометрические эффекты оставшегося искажения сигналов.

В последнее время с развитием российской ГЛОНАСС потребности навигационного рынка в мультисистемных приемниках все только нарастают. Ряд отечественных компаний применяют однокристальные чипы STM для разработки своих ГЛОНАСС-модулей и готовых корпусных устройств. В частности, компания НАВИА в 2011 году выпустила на рынок сразу 2 совмещенных ГЛОНАСС/ GPS / Galileo модуля, испытания которых показали очень хорошие результаты .

Доступность мгновенная или интегральная (англ. Availability – представляет % времени в течении которого выполняется условие PDOP <=6 при углах места КА >= 5 градусов. Простой пример: в былые времена до 2010г доступность по ГЛОНАССу была в некоторых районах земного шара не выше 70-80% а сейчас везде 100%!)

Снижение точности или Геометрическое снижение точности (англ. Dilution of precision, DOP , англ. Geometric Dilution of Precision, GDOP)

RAIM (англ. Receiver Autonomous Integrity Monitoring — Автономный Контроль Целостности Приемника (АКЦП)), технология, разработанная для оценки и поддержания целостности системы GPS, GPS приемника. В особенности это важно в тех случаях, где корректная работа GPS систем, необходима для обеспечения надлежащего уровня безопасности, например в авиации или морской навигации.

Специальная погрешность

Главная причина погрешностей данных в системе GPS больше не является проблемой. Второго мая, 2000 года в 5:05 утра (MEZ) так называемая специальная погрешность (SA) была отключена. Специальная погрешность - это искусственная фальсификация времени в сигнале L1, переданном спутником. Для гражданских GPS приемников эта погрешность вела к менее точному определению координат. (ошибка в приблизительно 50 м. в течение нескольких минут).

В дополнение, полученные данные передавались с меньшей точностью, что означает, что передаваемое положение спутника не соответствует действительности. Таким образом, за несколько часов возникает неточность данных о местоположении в 50-150 м. В те времена, когда специальная погрешность была активна, гражданские GPS приборы имели неточность в приблизительно 10 метров, а в наши дни - 20 или обычно даже меньше. После отключения выборочной погрешности, главным образом, улучшились точность данных о высоте.

Причиной для специальной погрешности была безопасность. Например, террористы не должны обладать возможностью обнаружения важных строительных объектов используя оружие на дистанционном управлении. Во время первой войны в заливе в 1990 специальная погрешность была отключена частично, т.к. американским войскам не хватало военных GPS приемников. Были приобретены 10 000 гражданских GPS приборов (Magellan и Trimble), которые позволили свободно и достаточно точно ориентироваться на пустынной местности. Специальная погрешность была деактивирована из-за широкого распространения GPS системы по всему миру. Следующие два графика показывают, как изменилась точность определения координат после выключения специальной погрешности. Длина границы диаграмм равняется 200 метрам, данные получены 1 мая 2000 года и 3 мая двухтысячного года в период 24 часа каждая. В то время как координаты при специальной погрешности находятся в радиусе 45 метров, то без нее 95 процентов всех точек находятся в радиусе 6.3 метра.

"Геометрия спутников"

Другой фактор, который влияет на точность определения координат - это "геометрия спутников". Геометрия спутников описывает положения спутников друг к другу с точки зрения приемника.

Если приемник видит 4 спутника и все они расположены, к примеру, на северо-западе, то это приведет к "плохой" геометрии. В худшем случае, обнаружение местоположения будет вовсе невозможно тогда, когда все определяемые расстояния будут указывать в одно направление. Даже, если местоположение распознано, погрешность может достигать 100 - 150 м. Если же эти 4 спутника будут хорошо распределены по небесному своду, то точность определяемого местоположения будет гораздо выше. Давайте предположим, что спутники расположены на севере, востоке, юге и западе, формируя углы в 90 градусов относительно друг друга. В данном случае расстояния могут быть измеряются в четырех разных направлениях, что и характеризует "хорошую" геометрию спутников.

Если два спутника находятся в наилучшем положении относительно приемника, то угол между приемником и спутниками равен 90 градусов. Время прохождения сигнала не может быть определенно абсолютно точно, о чем говорилось ранее. Поэтому возможные положения отмечены черными кругами. Точка пересечения (А) двух кругов достаточна мала и обозначена синим квадратным полем, что означает, что определяемые координаты будут достаточно точными.

Если спутники расположены почти в одну линию относительно приемника, то, как видно, на перекрестии мы получим более обширную площадь, а значит и меньшую точность.

Геометрия спутников также во многом зависит от высоких машин или от того, используете ли вы прибор в машине. Если какой-то из сигналов заблокирован, оставшиеся спутники попробуют определить координаты, если это вообще будет возможно. Такое часто может наблюдаться в зданиях, когда вы близко расположены к окнам. Если определение местоположением будет возможным, то в большинстве случаев оно будет не точным. Чем большая часть небосвода загорожена каким-либо предметом, тем становится сложнее определить координаты.

Большинство GPS приемников не только показывают количество "пойманных" спутников, но так же и их положение в небе. Это позволяет пользователю судить, закрывается ли какой-то определенный спутник каким-либо предметом и возникнет ли неточность данных при перемещении всего на пару метров.

Производители большинства приборов дают свою формулировку о точности измеряемых величин, которая в основном зависит от разных факторов. (о которых производитель неохотно говорит).

Для определения качества геометрии спутников в основном используются значения DOP ("разбавление" точности). В зависимости от того, какие факторы используются для вычисления значений DOP, возможны различные варианты:

  • GDOP (Geometrical Dilution Of Precision); Полная точность; 3D-координаты и время
  • PDOP (Positional Dilution Of Precision) ; Точность положения; 3D-координаты
  • HDOP (Horizontal Dilution Of Precision); Горизонтальная точность; 2D-координаты
  • VDOP (Vertical Dilution Of Precision); Вертикальная точность; высота
  • TDOP (Time Dilution Of Precision); временная точность; время

HDOP-значения ниже 4 хороши, выше 8 - плохие. HDOP значения становятся хуже, если "пойманные" спутники находятся высоко в небе над приемником. С другой стороны, значения VDOP становятся тем хуже, чем ближе спутники к горизонту, а значения PDOP хороши, когда спутники находятся прямо над головой и еще три распределены по горизонту. Для точного определения местоположения, значение GDOP не должно быть меньше 5. Значения PDOP, HDOP и VDOP являются частью NMEA данных GPGSA.

Геометрия спутников не является причиной погрешности в определении положения, которое может быть измерено в метрах. На самом деле значения DOP усиливает другие неточности. Высокие значения DOP увеличивает другие ошибки больше, чем низкое значения DOP.

Ошибка, которая возникает при определении местоположения из-за геометрии спутников, также зависит от широты, на которой находится приемник. Это показано ниже на диаграммах. Диаграмма слева показывает неточность по высоте (вначале кривая изображена со специальной погрешностью), которая была записана в Вухане (Китай). Вухан расположен на 30.5° северной широты и является наилучшим местом, где совокупность спутников всегда идеальна. Диаграмма справа показывает такой же записанный интервал, сделанный на станции Касей в Антарктике (66.3° южной широты). Из-за не такой идеальной совокупности спутников в этой широте время от времени возникали более грубые ошибки. В дополнение ошибка происходит из-за влияния атмосферы - чем ближе к полюсам, тем больше погрешность.

Орбиты спутников

Хотя спутники и находятся на достаточно четко определенных орбитах, небольшое отклонения от орбит все же возможно из-за гравитации. Солнце и Луна имеют слабое влияние на орбиты. Данные об орбите постоянно корректируются и поправляются и регулярно посылаются приемнику в эмпирическую память. Поэтому влияние на точность определения местоположения достаточно маленькое и если возникает погрешность, то не более 2 метров.

Влияния отражения сигналов

Эффект происходит из-за отражения сигналов спутника от других объектов. Для GPS сигналов этот эффект главным образом происходит в близости больших зданий или других объектов. Отраженному сигналу требуется больше времени, чем прямому сигналу. Ошибка составит всего несколько метров.

Атмосферные эффекты

Другой источник неточности это уменьшение скорости распространения сигнала в тропосфере и ионосфере. Скорость распространения сигналов в открытом космосе равна скорости света, а в ионосфере и тропосфере она меньше. В атмосфере на высоте в 80 - 400 км энергией солнца создается большое количество положительно заряженных ионов. Электроны и ионы сконцентрированы в четырех токопроводящих слоях ионосферы (D-, E-, F1-, и F2-слоях).
Эти слоя преломляют электромагнитные волны, исходящих от спутников, что увеличивает время прохождения сигналов. В основном эти ошибки корректируются вычислительными действиями приемника. Различные варианты скоростей при прохождении ионосферы для низких и высоких частот прекрасно известны для нормальных условий. Эти значения используются при расчете координат местоположения. Однако, гражданские приемники не способны вносить корректировку для непредвиденных изменений в прохождении сигнала, причиной которых могут стать сильные солнечные ветра.

Известно, что во время прохождения ионосферы электромагнитные волны замедляются обратно пропорционально площади их частоты (1/f2). Это означает, что электромагнитные волны с низкой частотой замедляют скорость быстрее, чем электромагнитные волны с высокими частотами. Если сигналы с высокой и низкой частотой, которые достигли приемника, позволили проанализировать разность во времени их прибытия, то время прохождения в ионосфере также будет посчитано. Военные GPS приемники используют сигналы двух частот (L1 и L2) , которые по разному ведут себя в ионосфере, и это позволяет устранить другую погрешность при вычислениях.

Влияние тропосферы - это следующая причина, почему время прохождения сигнала увеличивается из-за преломления. Причинами преломления являются разная концентрация водяного пара в тропосфере, в зависимости от погоды. Данная ошибка не так велика, как ошибка, которая возникает при прохождение, через ионосферу, но она не может быть устранена вычислением. Для исправления этой ошибки при вычислении используется приблизительная поправка.

Следующие два графика показывают ошибку ионосферы. Данные изображенные слева, были получены одночастотным приемником, который не может внести исправить ошибку ионосферы. График справа получен двухчастотным приемником, который может корректировать ошибку ионосферы. Обе диаграммы имеют примерно одинаковый масштаб(Слева: Широта от -15м до +10 м, Долгота -10м до +20 м. Справа: широта от - 12 м до + 8 м, долгота от - 10м до +20м). Правый график показывает более высокую точность.

Используя WAAS и EGNOS можно настроить "карты" погодных условий над различными регионами. Откорректированные данные отсылаются на приемник и заметно улучшают точность.

Неточность часов и округление ошибок

Несмотря на то, что время приемника синхронизируется с временем спутника во время определения положения, все же неточность времени есть, что приводит к ошибки в 2м при определении местоположения. Округление и вычислительные ошибки приемника имеют погрешность примерно в 1м.

Релятивистские эффекты

В данном разделе нет полного объяснения теории относительности. В повседневной жизни мы не осознаем значения теории относительности. Однако, эта теория влияет на множество процессов, среди которых правильное функционирование GPS системы. Это влияние будет коротко объяснено далее.

Как мы знаем, время является одним из главных факторов в GPS навигации и должно быть равно 20-30 наносекундам, чтобы обеспечить необходимую точность. Поэтому необходимо учесть скорость движения спутников (примерно 12000 км/ч)

Кто когда-либо сталкивался с теорией относительности, знает, что время течет медленнее при больших скоростях. Для спутников, которые движутся со скоростью 3874 м/с, часы идут медленнее, чем для земли. Это релятивистское время ведет к неточности во времени примерно в 7,2 микросекунде в день (1 микросекунд = 10-6 секунд). Теория относительности также гласит, что время идет тем медленнее, чем сильнее поле гравитации. Для наблюдателя на земной поверхности часы спутника будут идти быстрее (так как спутник находится на 20 000 км выше и подвергается гравитационным силам меньше, чем наблюдатель). И эта вторая причина этого эффекта, который в шесть раз сильнее, чем неточность о которой говорилось чуть ранее.

В целом, кажется, что часы на спутниках идут немного быстрее. Отклонение времени для наблюдателя на Земле составило бы 38 микросекунд в день и послужили бы причиной ошибки в итоге в 10 км за день. Чтобы избежать этой ошибки нет необходимости постоянно вносить корректировки. Частота часов на спутниках была установлена на 10.229999995453 Mhz вместо of 10.23 Mhz, но данные используют так, как если бы они имели стандартную частоту в 10.23 MHz. Эта уловка решила проблему релятивистского эффекта раз и навсегда.

Но есть и другой релятивистский эффект, который не учитывается при определении местоположения по системе GPS. Это так называемый эффект Сагнака и он вызван тем, что наблюдатель на поверхности Земли также постоянно движется со скоростью 500м/с (скорость на экваторе) из-за того, что планета вращается. Но влияние этого эффекта мало и его корректировка сложна для вычисления, т.к. зависит от направления движения. Поэтому этот эффект учитывается только в особых случаях.

Ошибки GPS системы приведены в следующей таблице. Частные значение не являются постоянными значениями, но являются подчиняются различиям. Все числа - приблизительные значения.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!